Predictive Analytics Broken Down

Who is this guy?

CEO / Co-Founder Conductrics

<u>www.conductrics.com</u>

matt@conductrics.com

Past: Database Marketing Education: Artificial Intelligence & Economics

twitter:@mgershoff,@conductrics Email:matt@conductrics.com

What is Conductrics?

- 1. Cloud-based Adaptive Testing and Decision Engine
- 2. API-Based Testing, Targeting and Optimization
 - *REST API: Compatibility with CMS systems and other platforms*
 - Native Programming Wrappers (iOS, PHP, jQuery, Node, etc.)
 - New JavaScript API for super fast decisions at scale
- 3. "WAX" Framework for point-and-click style customers
 - Client-side, tag-based, "skip IT" style implementation
- 4. Browser UI
 - Admin Console
 - *Reporting* twitter:@mgershoff,@conductrics Email:matt@conductrics.com

Confidential

What does Conductrics do?

1. Experimentation

- AB and Multivariate Testing
- Adaptive / Bandit Testing

2. Personalization

- Targeting with Business Logic
- Targeting via machine learning twitter:@mgershoff,@conductrics Email:matt@conductrics.com

Promise of Predictive Analytics

The Promises:

- Help make predictions about the future
- Predictions about customer:
 - Preferences
 - Intent

Benefits of Predictive Analytics

The Benefits:

- Provide customers with right set of experiences
- Eliminate marketing waste

Why care how it works?

- Better consumer of predictive analytics tools
- How to get the most out of it predictive analytics
- Help ensure you understand its limitations

All Predictive Analytics Uses

Transactional System

Confidential

Two Requirements for Personalization

1.Data 2.Logic

Data: 'Sensing' the World

Types of Data

Observable

- Return Customer
- Weekend/Weekday
- Mobile/DeskTop
- Browser Type
- User Age
- Geo/Census
- Weather
- Tenure/RFM Score

Intervention

- Lottery Game
- Price
- Sales Offers
- Shipping Type
- Layout/UX
- Which Products
- Suggested Quantities

Two Requirements for Personalization

1.Data 2.Logic

Requirements for Personalization Decision logic links Observations to Actions

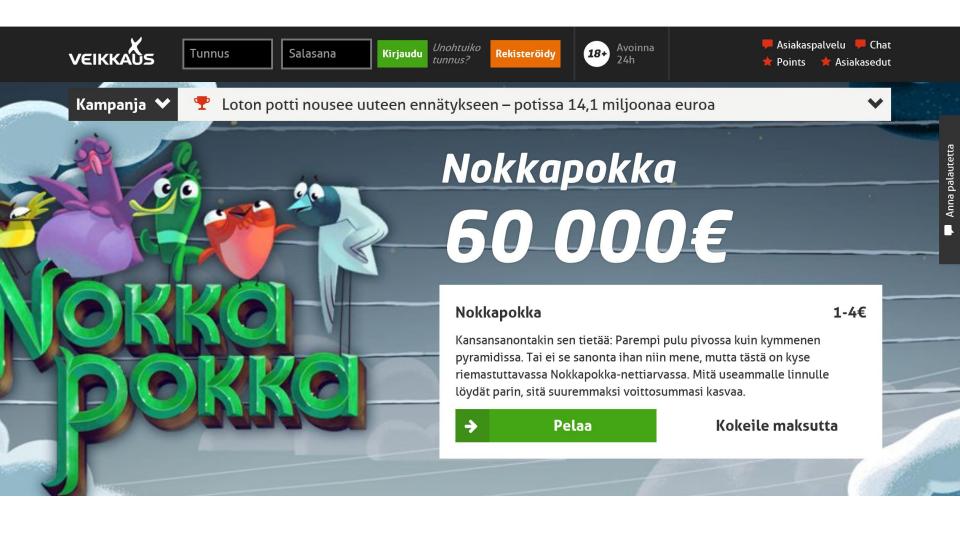
Confidential

How to come up with the Logic?

IF [Customer] THEN [Experiences?]

How to come up with the Logic?

Example: Veikkaus



Example: Lottery Games

Show high price games ...

twitter: @mgershoff

Example: Lottery Games

Or show the low price games

twitter: @mgershoff

Example: Lottery Games

To keep it simple just look at:

New or Repeat Player

Weekday or Weekend

How to come up with the Logic?

IF [Repeat and/or Weekend] THEN [High/Low Price?]

... in order to be most profitable

How its Done

1 Learn how Repeat and Weekend customers predict

low price games

How its Done

1 Learn how Repeat and Weekend customers predict

low price games

2 Learn how Repeat and Weekend customers predict

high price games

How its Done

1 Learn how Repeat and Weekend customers predict

low price games

2 Learn how Repeat and Weekend customers predict

high price games

3 Then compare for each customer (Choose the one with the highest value)

twitter: @mgershoff

Predictive Analytics Methods

- Deep Learning Nets
- Decision Trees
- Gaussian Process (is a Bayesian method)
- Support Vector Machines
- KNN actually kinda like segmentation
- Naive Bayes (is NOT a Bayesian method)
- Logistic Regression

http://conductrics.com/data-science-resources/ http://conductrics.com/data-science-resources-2

@mgershoff

We are going to use Linear Regression

Why Linear Regression?

Benefits:

Has nice Statistical Properties
 Easy(ish) to interpret
 In practice, often all you need

A model of relationships in this form:

A model of relationships in this form:

Prediction = Base + B1*Attribute1 ... + Bj*Attributej

A model of relationships in this form:

Prediction = Base + B1*Attribute1 ... + Bj*Attributej

Just Add up all of the customer 'attributes' by the impact (B) of the Feature

We will learn two models, one for each game:

We will learn two models, one for each game:

Game High = Base_H + W_H*Weekend + R_H*Return

We will learn two models, one for each game:

Game High = Base_H + W_H*Weekend + R_H*Return

Game Low = Base_L + W_L*Weekend + R_L*Return

Linear Regression + Sequential Learning

@mgershoff

Benefits of Sequential Learning

1. Don't have to wait to collect the data

twitter: @mgershoff

Benefits of Sequential Learning

1.Don't have to wait to collect the data

2. Constantly updating you can use it real time

Benefits of Sequential Learning

- **1.Don't have to wait to collect the data**
- 2. Constantly updating you can use it real time
- 3.Scalable-any real production PA is almost certainly going to use the method

Benefits of Sequential Learning

- **1.Don't have to wait to collect the data**
- 2. Constantly updating you can use it real time
- 3.Scalable–any real production PA is almost certainly going to use the method
- 4. The computations are simple to understand

The Sequential Algorithm in words

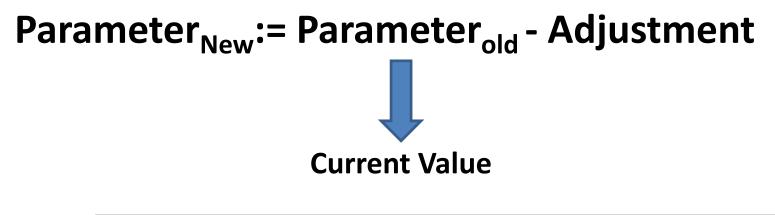
- 1) Observe the data for a single customer
- 2) Using the current parameter values to make a prediction
- 3) See how far off your predicted value was from the actual value
- 4) Use how far off you prediction was to update your parameter values
- 5) Adjust how much you update by something like O(1/n)
 - sort of like an average

6) Repeat

The Sequential Algorithm

Adjustment = (Predicted - Actual) * 1/sqrt(n)

The Difference (Error) of the actual value and the predicted result



How it is done: No data yet, high cost game

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
0	0	0					

Observe New Customer on Weekend

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
0	0	0	0	1	1.00		

Observe New Customer on Weekend

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
0	0	0	0	1	1.00		

Prediction= Base_H + W_H*Weekend + R_H*Return

Plug in values

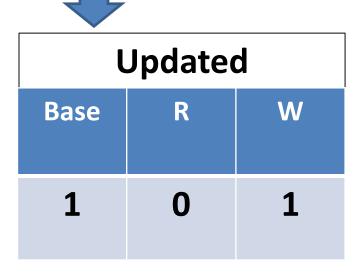
Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
0	0	0	0	1	1.00	0	-1.00

$0 = 0 + 0^*0 + 0^*1$

twitter: @mgershoff

Update Base and Weekend Impact Score

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
0	0	0	0	1	1.00	0	-1.00



Observe New Customer Weekday

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
1	0	1	0	0	2.00		

Prediction= Base_H + W_H*Weekend + R_H*Return

Plug in values

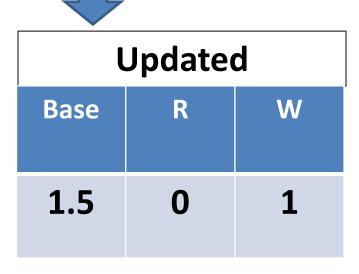
Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
1	0	1	0	0	2.00	1.00	-1.00

1 = 1 + 0*0 + 1*0

twitter: @mgershoff

Update Just the Base Impact Score

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
1	0	1	0	0	2.00	1	-1.00



Observe Return Customer on Weekday

Hidden			Wha	What We Know			
Base	R	W	Return	WkEnd	Sales	Predict	Error
1.5	0	1	1	0	3.00		

Prediction= Base_H + W_H*Weekend + R_H*Return

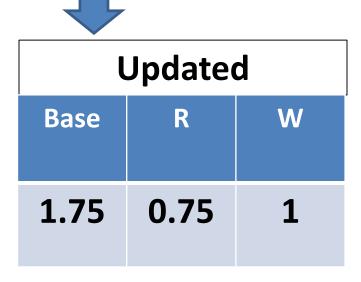
Plug in values

Hidden			What We Know				
Base	R	W	Return	WkEnd	Sales	Predict	Error
1.5	0	1	1	0	3.00	1.50	-1.50

3 = 1.5 + 0*1 + 1*0

Update the Base and Return Impact Score

Hidden			Wha	What We Know			
Base	R	W	Return	WkEnd	Sales	Predict	Error
1.5	0	1	1	0	3.00	1.50	-1.50



Online Regression

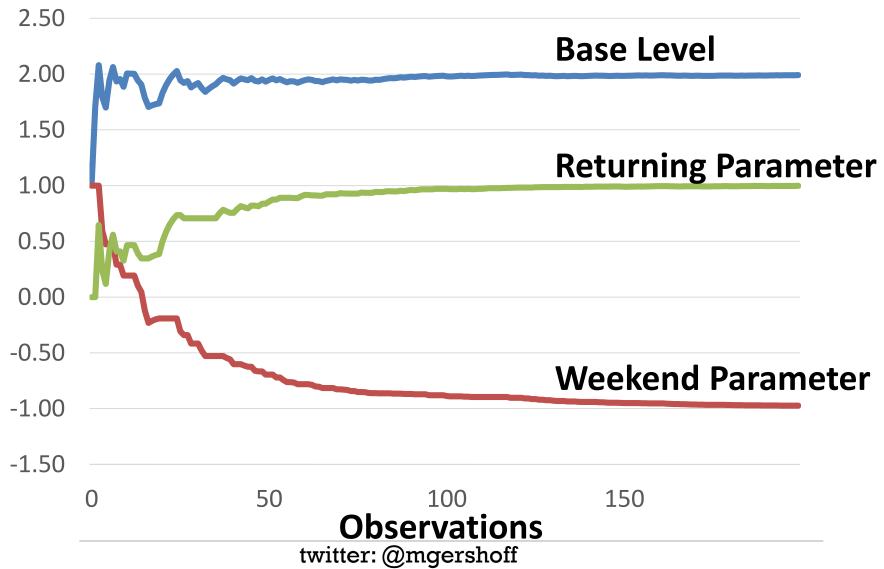
After 200 Iterations

Base	R	W
2.0	1.0	-1.0

High Price Model Results Sales = 2.0 + 1.0*Return -1.0*Weekend

Online Results: 200 Iterations

Parameter Value



Back to Our Task

Model: High Price Game High = 2.0 + 1.0*Return -1.0*Weekend

matt@conductrics.com;

www.conductrics.com

Model Low Price Game Low = 1.0 + 1.0*Return + 0.5*Weekend

matt@conductrics.com;

www.conductrics.com

Tabular Targeting Logic

Returning	Weekend	High Price	Low Price	Selection
Ν	Ν	2.0	1.0	High
Υ	Ν	3.0	2.0	High
Ν	Υ	1.0	1.5	Low
Υ	Υ	2.0	2.5	Low

Targeting Logic as Rule

IF [Weekend] THEN [Low] Else [High]

twitter: @mgershoff

Targeting Logic as Rule

Expressing the logic as a set of succinct rules is generally a hard problem

IF [Weekend] THEN [Low] Else [High]

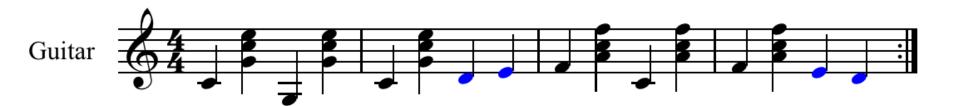
twitter: @mgershoff

How to evaluate our targeting logic?

How do we measure our Targeting?

A/B TEST!!

Need a Baseline

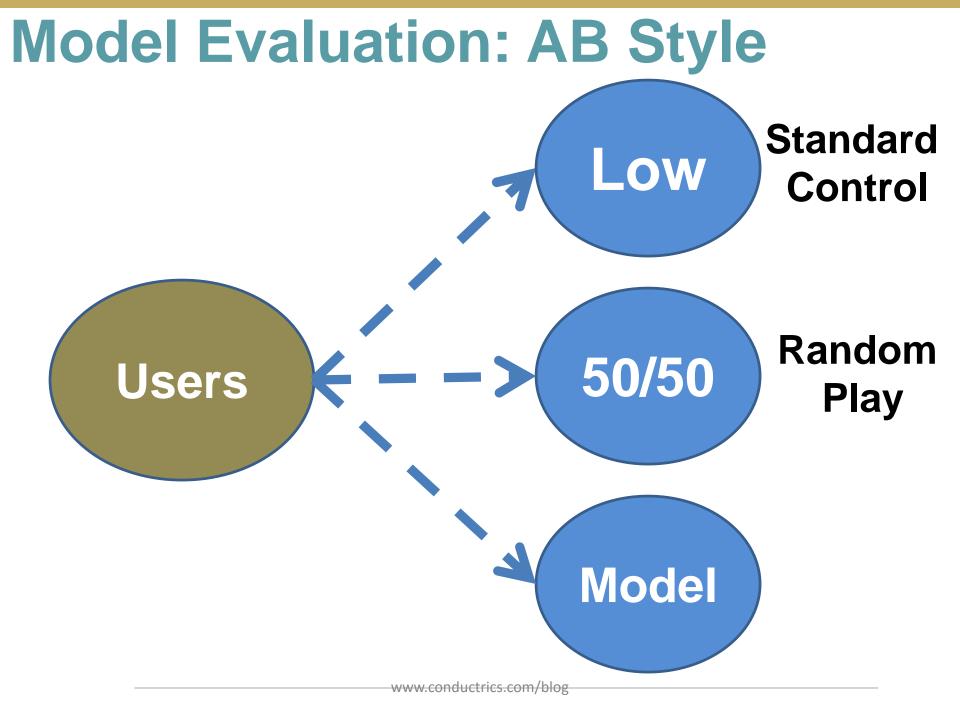


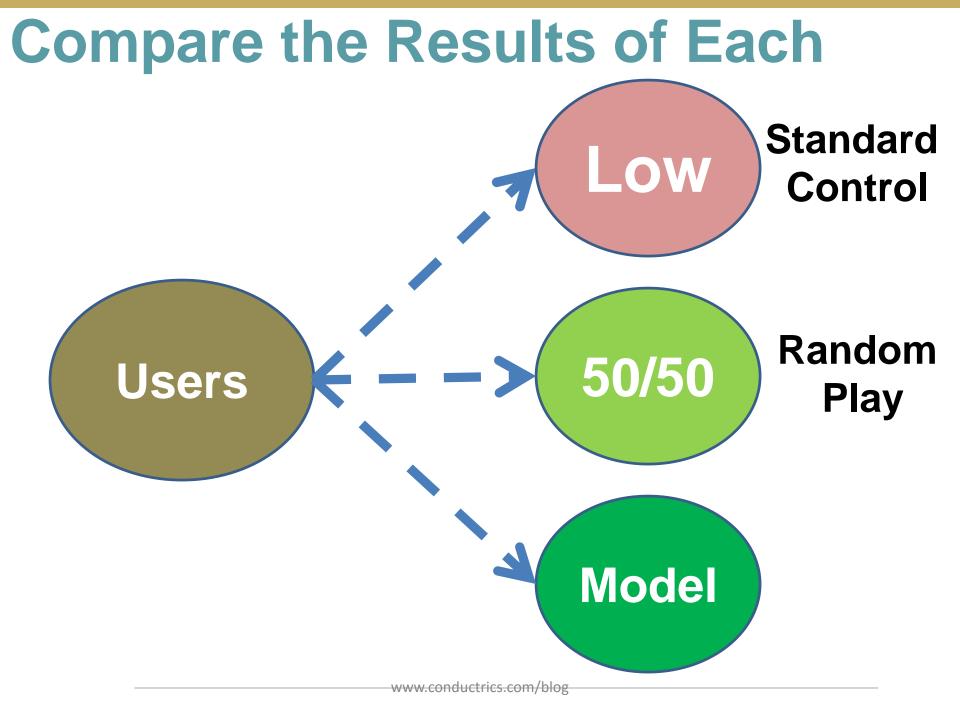
Random Selection as Control

Good:

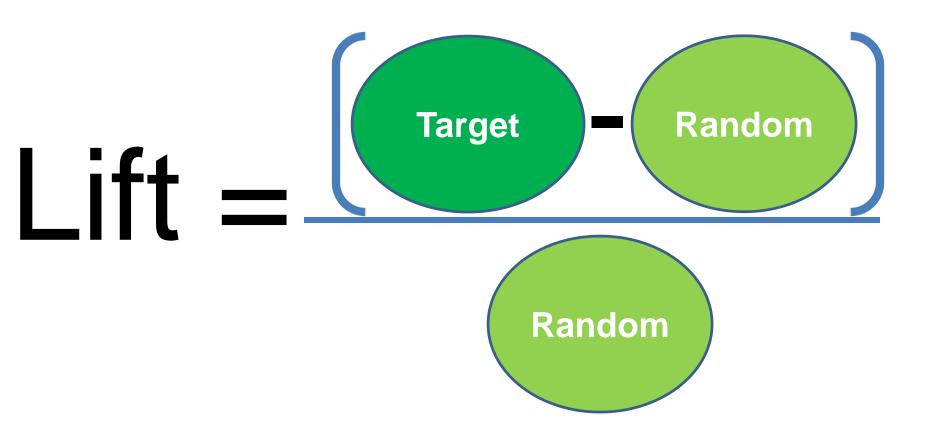
- 1. A baseline we can always use
- 2. Selecting randomly is often good policy when we don't have any additional information

Bad: Often hard to beat (which is Good)





Results: Model ROI/Lift



Beware the Faustian Bargain!

www.conductrics.com/blog

Description Michał Elwiro Andriolli

Date 1895

Source http://www.pinakoteka.zascianek.pl/Andriolli/Index.htm

Targeting = Complexity

Customer data needs to be 'accurate' AND available at decision time

We need to create AND manage experiences and content

Need to create AND mange our decision logic

Difficult to know what state system is in. Before just one state, now many.

Targeting and the ROI of Complexity

Value(Complex System) – Value(Simple) Value(Simple)

What about Segmentation?

@mgershoff

Segmentation Doesn't Scale

Just 20 Customer Features

1 Million Combinations

power(2,10) assuming all non mutually exclusive

Image Source: http://en.wikipedia.org/wiki/File:Carl Sagan - 1980.jpg; @mgershoff

Wake up. We are Done!

Twitter:mgershoff Email:matt.gershoff@conductrics.com